Showing posts with label The contemporary design context. Show all posts
Showing posts with label The contemporary design context. Show all posts

The contemporary design context

Orthographic projection in architectural representation inherently privileges the surface. When the three-dimensional world is sliced to fit into a two-dimensional representation, the physical objects of a building appear as flatplanes. Regardless of the third dimension of these planes, we recognize that the eventual occupant will rarely see anything other than the surface planes behind which the structure and systems are hidden.
While the common mantra is that architects design space the reality is that architects make (draw) surfaces. This privileging of the surface drives the use of materials in two profound ways. First is that the material is
identified as the surface: the visual understanding of architecture is determined by the visual qualities of the
material.
Second is that because architecture is synonymous with surface – and materials are that surface – we essentially think of materials as planar. The result is that we tend to consider materials in large two-dimensional swaths: exterior cladding, interior sheathing. Many of the materials that we do not see, such as insulation or vapor barriers, are still imagined and configured as sheet products. Even materials
that form the three-dimensional infrastructure of the building, such as structural steel or concrete, can easily be
represented through a two-dimensional picture plane as we tend to imagine them as continuous or monolithic
entities.
Most current attempts to implement smart materials in architectural design maintain the vocabulary of the twodimensional surface or continuous entity and simply propose smart materials as replacements or substitutes for more conventional materials. For example, there have been many proposals to replace standard curtain wall glazing with an electrochromic glass that would completely wrap the building facade. The reconsideration of smart material implementation through another paradigm of material deployment has yet to fall under scrutiny. One major constraint that limits our current thinking about materials is the accepted belief that the spatial envelope behaves like a boundary.

We conceive of a room as a container of ambient air and light that is bounded or differentiated by its surfaces; we consider the building envelope to demarcate and separate the exterior environment from the interior environment. The presumption that the physical boundaries are one and the same as the spatial boundaries has led to a focus on highly integrated, multifunctional systems for fac¸ades as well as for many interior partitions such as ceilings and floors.

In 1981, Mike Davies popularized the term ‘polyvalent wall’, which described a fac¸ade that could protect from the sun, wind and rain, as well as provide insulation, ventilation and daylight.2 His image of a wall section sandwiching photovoltaic grids, sensor layers, radiating sheets, micropore membranes and weather skins has influenced many architects and engineers into pursuing the ‘super fac¸ade’ as evidenced by the burgeoning use of double skin systems. This pursuit has also led to a quest for a ‘supermaterial’ that can integrate together the many diverse functions required by the newly complex fac¸ade. Aerogel has emerged as one of these new dream materials for architects: it insulates well yet still transmits light, it is extremely lightweight yet can maintain its shape.

Many national energy agencies are counting on aerogel to be a linchpin for their future building energy conservation strategies, notwithstanding its prohibitive cost, micro-structural brittleness and the problematic of its high insulating value, which is only advantageous for part of the year and can be quite detrimental at other times.